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Training (COSMOS) 
and test (XMM-LSS) 
data constructed to 

have different 
redshift (left) and 

colour (below) 
distributions

We used 
Gaussian Mixture
Models to model
the differences in 
colour-magnitude 

space

• Measuring the redshifts of large numbers (105-109) of galaxies is 
essential for many problems in galaxy physics and cosmology. 

Spectroscopic redshifts can unfortunately only be obtained for a small 
number of these galaxies; photometry must be used

• Photometric redshifts (photo-z) can be calculated in two main ways: a) 
fitting model galaxy spectra templates, or b) using machine learning (ML), 

trained on galaxies for which we do know the redshift

• GPz is a machine learning code for photo-z developed in 
Almosallam+2016, applied in Gomes+2018 , Duncan+2018

• We seek to develop ways to account for training and test data having 

different distributions in parameter space - traditionally challenging for 
ML methods

• In COSMOS and XMM-LSS uGRIZYJHK data we find bias on predictions 

can be moderately reduced with no additional data if the differences in 
the colour distributions are taken into account, Hatfield+2020

https://arxiv.org/abs/1604.03593
https://arxiv.org/abs/1712.02256
https://arxiv.org/abs/1712.04476
https://arxiv.org/abs/2009.01952


METHODS CONSIDERED & RESULTING IMPACT ON PHOTO-Z METRICS

Bias on predictions (mean prediction minus true 
redshift): zero means predictions are unbiased)

Improvement in bias 
(100%=complete removal of bias)

Methods Considered
• Normal: base use of GPz

• GCSL: Upweighting parts of colour space common in the test data but rare in 
the training data

• GMM-Divide: Using a GMM to divide parameter space into smaller segments in 
an unsupervised way, and then training on them separately

• Weigh Validation: Making the validation data look more like the test data
• Resample: Retrain the algorithm multiple times, each time resampling new 

photometry values based on the photometry uncertainty
• Log: Modelling log(z) rather than z
• All: Using Weigh Validation, Resample and GMM-Divide simultaneously

`All’ gave improvements 
across all metrics



Conventional 
Application of ML

ML with the 
modifications 

described in this poster

Template based 
photo-z (from 
Adams+2020)

Hybrid combination of ML 
and Template methods – for 

overall better predictions 

Have 
applied 

methods here 
to the Rubin 

DESC 
Tomography 
Challenge

RELATED WORK

In Hatfield+2019 we looked at how measurements of the
relationship between galaxies and their host dark matter

halo are biased if photo-z are used rather than the true
redshifts, for the hydrodynamical cosmological simulation
Horizon-AGN
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COMBINING ML AND TEMPLATE FITTING

“True” Redshift
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(Galaxies on the diagonal have perfect predictions)
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https://arxiv.org/abs/1912.01626
https://github.com/LSSTDESC/tomo_challenge
https://arxiv.org/abs/1909.03843

